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Abstract The community Noah land surface model with multiparameterization options (Noah‐MP)
provides a plethora of model configurations with varying complexity for land surface modeling. The
practical application of this model requires a basic understanding of the relative abilities of its various
parameterization configurations in representing spatiotemporal variability and hydrologic connectivity.
We designed an ensemble of 288 experiments from multiparameterization schemes of six physical processes
to assess and reduce the structural uncertainty for land surface modeling over 10 hydrologic regions in
China for the period 2001–2010. The observed latent heat (LH) was well reproduced by the ensemble.
Meanwhile, most experiments underestimated sensible heat (SH) throughout the year and overestimated
the cold season but underestimated the warm season terrestrial water storage anomaly (TWSA). The
sensitive processes and best‐performing schemes varied not only with regions but also among variables. The
LH and SH were most sensitive to runoff‐groundwater (RUN), surface heat exchange coefficient (SFC), and
radiation transfer (RAD). The TWSA was dominated by RUN and RAD while largely influenced by soil
moisture factor for stomatal resistance (BTR) and frozen soil permeability (INF) over some limited regions.
By contrast, supercooled liquid water (FRZ) had little influence on all variables. Our optimization for
individual variables produced high mean Taylor skill scores that ranged from 0.95–0.99 for LH, 0.82–0.99 for
SH, and 0.63–0.95 for TWSA depending on regions. The simultaneous optimization made trade‐off
among the three variables, which improved TWSA performance at the cost of reducing the skill for LH and
SH over a few regions.

1. Introduction

Land surface models (LSMs) play an important role in numerical weather prediction and climate projec-
tion, as they control the water, energy, and nutrient exchanges between the land surface and atmosphere
(Dickinson et al., 2006; Gan et al., 2015; Liang et al., 2012; Pitman, 2003). They have evolved from simple
bucket models representing water and energy balances (Manabe, 1969) to complex models representing
an increasing number of interactions and feedbacks between physical, chemical, and biological processes
(Bonan et al., 2011; Chen & Dudhia, 2001; Choi et al., 2013; Choi & Liang, 2010; Dai et al., 2003;
Dickinson et al., 1986; Liang et al., 1994; Oleson et al., 2008; Sellers et al., 1997). The diversity of land
surface modeling approaches motivates the development of unified modeling frameworks that provide
multiple schemes for the same processes, such as the Noah land surface model with multiparameteriza-
tion options (Noah‐MP; Niu et al., 2011; Yang et al., 2011), Joint UK Land Environment Simulator
(JULES; Best et al., 2011; Clark et al., 2011), and Structure for Unifying Multiple Modeling
Alternatives (SUMMA; Clark et al., 2015a, 2015b). Among them, Noah‐MP has received increasing atten-
tion due to its large improvement of the widely used baseline model Noah (Chen & Dudhia, 2001; Ek
et al., 2003) and its coupling to the community Weather Research and Forecasting (WRF) model
(Barlage et al., 2015), WRF‐Hydro model (Gochis et al., 2013), and National Water Model (NWM;
Cosgrove et al., 2017).
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The flexibility in the selection of different schemes under the same modeling framework accommodates a
plethora of physics configurations with varying complexity. The total number of combinations of alterna-
tive schemes for the 10 processes of the original Noah‐MP is up to 4,608 (Gayler et al., 2014) and this num-
ber has been increasing due to the incorporation of new schemes for even more physical processes in the
latest version. Noah‐MP has been evaluated at global scales (Yang, Niu, et al., 2011), regional scales (Cai
et al., 2014; Chen et al., 2015; Ma et al., 2017; Niu et al., 2011; Park & Park, 2016; Xia et al., 2017; Zheng
& Yang, 2016), basin scales (Cai et al., 2014; Cuntz et al., 2016; Mendoza et al., 2015), and site scales
(Arsenault et al., 2018; Cai et al., 2016; Gao et al., 2015; Pilotto et al., 2015; Zhang et al., 2016; Zheng
et al., 2015). However, most researchers used a single, subjective set of scheme combination mainly based
on their own experience or previous studies. In reality, a scheme combination that performs in one situa-
tion may not be appropriate for another due to the substantial spatial and temporal heterogeneities in sur-
face soil and vegetation characteristics and their associated physical processes (Clark et al., 2011; Gayler
et al., 2014; Mendoza et al., 2015).

A systematic and rigorous intercomparison of the multiple parameterizations would help to identify the
dominant processes and appropriate configurations for representing varying hydroclimate, soil, and vegeta-
tion conditions (Bai et al., 2009; Best et al., 2015; Henderson‐Sellers et al., 1993). This would further help to
(1) reinforce our understanding of model behavior across different regions (Ma et al., 2017), (2) provide gui-
dance for improving model physics (Wang et al., 2018), (3) conduct multiparameterization ensemble predic-
tion (Zheng & Yang, 2016), and (4) perform parameter sensitivity analysis and optimization (Arsenault et al.,
2018; Duan et al., 2017; Gan et al., 2014). Nevertheless, the intercomparison work is not only constrained by
the computational cost of a large number of scheme combinations, but also with great uncertainty owing to
the interactions among different processes.

Previous studies on Noah‐MP parameterization intercomparison were limited to a few sites, a few scheme
combinations, or short‐term simulations due to the otherwise high computational cost of model simula-
tions. Moreover, most research focused on the sensitivities of physical processes, whereas few tried to
optimize the combinations of parameterization schemes. Besides, a systematic intercomparison of the
Noah‐MP parameterization schemes across different hydrologic regions over the continental China
domain has not been made. For example, Yang, Niu et al. (2011) conducted 36 ensemble experiments
to explore the influences of soil moisture factor for stomatal resistance, runoff and groundwater, leaf
dynamics, and stomatal resistance in simulating land surface fluxes over global 50 largest river basins
for the period 1983–2006. They concluded that runoff and groundwater are predominant over the other
processes in controlling globally averaged soil moisture and evapotranspiration and their relationship.
Afterward, Hong et al. (2014) employed the microgenetic algorithm (Krishnakumar, 1990) to identify
the best scheme combinations of Noah‐MP for evapotranspiration and runoff simulation over the Han
River basin in South Korea for the period 2001–2003. They found that radiation transfer, surface
exchange coefficient, and runoff and groundwater are the most important processes, but the scheme sets
chosen to produce the most accurate simulations are very different between evapotranspiration and run-
off. Gayler et al. (2014) designed 720 ensemble experiments to identify the most responsive processes for
water and energy fluxes simulations during the 2009 vegetation period at two agricultural field sites with
different soil and hydroclimate conditions in Southwest Germany. The authors observed that the way
Noah‐MP responds to the alternative scheme options is quite different among output variables and
research sites. Zhang et al. (2016) conducted 1,152 ensemble experiments for sensible and latent heat
simulation in 2008 at the Dali site in Southwest China. They reported that stomatal resistance, soil moist-
ure factor for stomatal resistance, runoff and groundwater, and surface exchange coefficient are the most
important factors.

The main purpose of this paper is to assess and reduce the uncertainties associated with the
physical parameterizations of Noah‐MP in simulating land surface fluxes over 10 large hydrologic
regions in China with varying hydroclimate, soil, and vegetation conditions. We accomplish this by
directly comparing the performances among different parameterization schemes and objectively analyz-
ing their differences with statistical methods. Section 2 describes the Noah‐MP model, evaluation data,
and analysis approach. Section 3 presents the results and discussion. Section 4 concludes our
main findings.
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2. Model Description, Evaluation Data, and Analysis Approach
2.1. Noah‐MP Physical Parameterization Options

Noah‐MP is a new‐generation LSM enhanced from the Noah model through the incorporation of improved
physics and multiple parameterization options for different land‐atmosphere interaction processes. The
major advances in model physics and related theories can be found in Niu et al. (2011) and Yang et al.
(2011). We adopted the Noah‐MP v1.6 and selected the control configuration for the following six processes
as suggested by Yang, Niu et al. (2011), and Ma et al. (2017): (1) dynamic vegetation (Dickinson et al., 1998;
Yang & Niu, 2003), (2) Ball‐Berry type canopy stomatal resistance scheme (Ball et al., 1987), (3) Canadian
Land Surface Scheme (CLASS) ground snow surface albedo (Verseghy, 1991), (4) Jordan's scheme
(Jordan, 1991) for partitioning precipitation into rainfall and snowfall, (5) Noah‐type lower boundary condi-
tion of soil temperature, and (6) semiimplicit snow/soil temperature time scheme. Table 1 lists the alterna-
tive parameterization options for other six processes to generate 288 scheme combinations for subsequent
analyses. A brief description of the differences among these options follows:

1. Soil moisture factor β for stomatal resistance (BTR) has three schemes. The notable difference is that the
CLM type (Oleson et al., 2004) shows a sharper and narrower range of variation with soil moisture than
the Noah type (Chen & Dudhia, 2001) does, and the SSiB type (Xue et al., 1991) is even steeper than the
CLM type.

2. Runoff and groundwater (RUN) have four schemes. The SIMGM and SIMTOP are based on TOPMODEL
(i.e., TOPography‐based hydrological MODEL) to parameterize both surface and subsurface runoff as
functions of water table depth, with a simple groundwater model for the former (Niu et al., 2007) and
an equilibrium water table for the latter (Niu et al., 2005). The Schaake96 and BATS use free drainage
concept for subsurface runoff, with an infiltration‐excess‐based surface runoff model for the former
(Schaake et al., 1996) and a fourth‐power function of the top 2‐m soil wetness for the latter (Yang &
Dickinson, 1996).

3. Surface heat exchange coefficient (SFC) has two schemes. The M‐O treats the effect of the roughness
lengths with the zero‐displacement height d0 (Brutsaert, 1982) while Chen97 accounts for the difference
between roughness lengths for heat and momentum (Chen et al., 1997).

4. Frozen soil permeability (INF) has two schemes in the parameterization of soil hydraulic properties.
NY06 defines the soil permeability using soil moisture (Niu & Yang, 2006) while Koren99 uses only
the liquid water volume (Koren et al., 1999).

5. Supercooled liquid water (FRZ) in frozen soil has two schemes for the freezing‐point depression equa-
tion. NY06 takes a more general form (Niu & Yang, 2006), while Koren99 takes a variant form with an
extra term that accounts for the increased interface between soil particles and liquid water (Koren
et al., 1999).

6. Radiation transfer (RAD) has three schemes to treat the canopy gap with regard to subgrid distributions
of vegetation. Scheme 1 parameterizes gap probability as a function of solar zenith angle and the 3‐D
structure of the vegetation canopy, scheme 2 assumes the gap probability to be zero, and scheme 3 sets
the gap probability to one minus the green vegetation fraction (Niu & Yang, 2004).

2.2. Model Input and Setup

The static input data for Noah‐MP were derived from various sources: (1) global multiresolution terrain
elevation data 2010 (GMTED2010) 30‐s topography height, (2) United States Geological Survey (USGS)
30‐s land use, (3) Food and Agriculture Organization (FAO) 30‐s soil texture, and (4) National
Environmental Satellite, Data, and Information Service (NESDIS) 0.144‐degree monthly 5‐year climatolo-
gical albedo and green vegetation fraction. We remapped these data onto the model grid using the
Weather Research and Forecasting (WRF) model Preprocessing System (WPS) version 3.9.1 (Wang
et al., 2017). The soil column was divided into four layers with thicknesses of 0.1, 0.3, 0.6, and 1.0 m from
the top to the bottom.

We used the 3‐hourly, 0.1° × 0.1° China Meteorological Forcing Dataset (CMFD) developed at the Institute
of Tibetan Plateau Research, Chinese Academy of Sciences (He & Yang, 2011; Yang et al., 2010) to drive the
Noah‐MP. This data set includes the forcing fields of surface pressure, 2‐m air temperature and specific
humidity, 10‐m wind speed, downward shortwave radiation, downward longwave radiation, and
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precipitation for the period 1979–2013. CMFD has been widely employed for land surface modeling over
China (Chen et al., 2011; Leng et al., 2015; Liu & Xie, 2013; Xue et al., 2013; Zheng et al., 2017).

Our study area was over the entire China land, centered at 35.0°N and 105.0°E with 700 latitudinal × 400
longitudinal grids at an equal 0.1° spacing. Figure 1 illustrates the distributions of elevation, vegetation,
and soil conditions, as well as the aridity index, which is defined as the ratio of mean annual precipitation
to potential evapotranspiration. Table 2 summarizes the distinct characteristics of the 10 hydrologic regions
of China.

To minimize the impact of uncertain initial condition on model performance in an efficient way, a two‐stage
spin‐upwas performed to provide different initial conditions for each of the 288 ensemble experiments. First,
the 30‐year forcing data from 1 January 1981 to 1 January 2011 was cycled 3 times to drive Noah‐MPwith the
physical options as the EXP6 in Yang, Niu et al. (2011), and then the 20‐year forcing from 1 January 1981 to 1
January 2001 was applied in each of the 288 experiments to get equilibrium states. By using the final states of
these spin‐up experiments as initial conditions, 288 ensemble experiments were then integrated, respec-
tively, for another 10‐year period from 1 January 2001 to 31 December 2010, results of which were aggre-
gated to monthly for subsequent analyses. All simulations for the spin‐up and ensemble experiments were
run at a 1‐hr time interval.

2.3. Evaluation Data and Metric

We used surface sensible heat (SH) and latent heat (LH) monthly data from the FLUXNET model tree
ensemble (MTE) products by Max Planck Institute for Biogeochemistry, available on the global 0.5° grid
for the period 1982–2011 (Jung et al., 2010, 2011). These products have been widely employed to evaluate
land‐atmosphere energy exchanges for LSMs (Bonan et al., 2011; Ma et al., 2017; Xia et al., 2016a; Xia
et al., 2016b) and climate models (Anav et al., 2013; Lawrence et al., 2012).

We also used terrestrial water storage anomaly (TWSA) monthly data from the Gravity Recovery and
Climate Experiment (GRACE) satellite retrieval products, available on the global 1° grid for the period
2002–2017 (Landerer & Swenson, 2012; Tapley et al., 2004). There are three products from different proces-
sing centers, and we adopted their arithmetic mean to reduce measurement errors (Sakumura et al., 2014).
This error reduction, however, comes with some signal loss, and hence we applied a gain factor to minimize
the loss (Landerer & Swenson, 2012). GRACE data have been widely employed to understand the water cycle
for large‐scale hydrologic modeling (see a review by Güntner, 2008).

We interpolated the observational products onto our model grid by bilinear interpolation. They were used as
the reference for model evaluation. In particular, we adopted Taylor skill score (Taylor, 2001) to quantify the
differences between model simulations and observations:

Table 1
Noah‐MP Parameterization Schemes Investigated in This Study

Physical process Scheme

BTR: Soil moisture factor for stomatal resistance 1. Noah: Function of soil moisture, as in Noah (Chen & Dudhia, 2001)
2. CLM: Matric potential related, as in CLM (Oleson et al., 2004)
3. SSiB: Matric potential related, as in SSiB (Xue et al., 1991)

RUN: Runoff and groundwater 1. SIMGM: TOPMODEL‐based runoff with the simple groundwater (Niu et al., 2007)
2. SIMTOP: TOPMODEL‐based runoff with an equilibrium water table (Niu et al., 2005)
3. Schaake96: Infiltration‐excess‐based surface runoff with free drainage (Schaake et al., 1996)
4. BATS: BATS runoff with free drainage (Yang & Dickinson, 1996)

SFC: Surface exchange coefficient for heat 1. M‐O: Monin‐Obukhov similarity theory (Brutsaert, 1982)
2. Chen97: Neglecting the zero displacement height (Chen et al., 1997)

INF: Frozen soil permeability 1. NY06: Function of soil moisture (Niu & Yang, 2006)
2. Koren99: Function of soil liquid water (Koren et al., 1999)

FRZ: Supercooled liquid water 1. NY06: Generalized freezing‐point depression (Niu & Yang, 2006)
2. Koren99: Variant freezing‐point depression (Koren et al., 1999)

RAD: Radiation transfer 1. gap = f(3D, cosz): Canopy gaps from 3‐D structure and solar zenith angle (Niu & Yang, 2004)
2. gap=0: No canopy gap (Niu & Yang, 2004)
3. gap = 1−fveg: Gaps from vegetated fraction (Niu & Yang, 2004)

Note. CLM = Community Land Model; SSiB = Simplified Simple Biosphere Model; BATS = Biosphere‐Atmosphere Transfer Scheme.
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T ¼ 2 1þ Rð Þbσ þ 1=bσð Þ2 (1)

where R is the correlation coefficient and bσ is the ratio of simulated to observed standard deviation. The
Taylor skill score ranges from zero to unity, and a higher score indicates a more accurate simulation.

For simultaneous optimization of SH, LH, and TWSA, we aggregated Taylor skill scores into a weighted
mean as

T ¼ ∑
3

k¼1
wkTk (2)

To improve the overall model performance, we assigned larger weights to the variables that were poorly
simulated or with lower skill scores

wk ¼ 1−Tmax
k

∑
3

k¼1
1−Tmax

k

� � (3)

where Tmax
k is the maximum Taylor skill score of all ensemble experiments for the kth evaluation variable

and ∑
3

k¼1
wk ¼ 1.

2.4. Analysis Approach

To objectively examine the differences among the large ensemble of model physical parameterization
configurations, a sensitivity score is required. Assume that there arem physical processes (i.e., experimental
factors, here m = 6) with each process having a different number of parameterization schemes (i.e., treat-
ments). The mean objective function value (i.e., treatment mean) of the jth scheme (j ¼ 1; 2;⋯) of the

Figure 1. The distributions of (a) elevation, (b) aridity index, (c) vegetation, and (d) soil conditions over 10 hydrologic regions of China.

10.1029/2019WR024814Water Resources Research

GAN ET AL. 5522



ith process (i ¼ 1; 2;⋯; m) can be represented by Y
ið Þ
j . We defined an index to quantify the sensitivity of

these physical processes as

Si ¼ ΔY ið Þ

max ΔY 1ð Þ
;ΔY 2ð Þ

;⋯;ΔY mð Þn o (4)

where ΔY ið Þ ¼ Y
ið Þ
max−Y

ið Þ
min is the difference between the largest and the smallest treatment means of the ith

process.

To test differences in all possible pairs of means, multiple comparison procedures are often used (Bretz et al.,
2010). Suppose that a physical process A has a parameterization schemes (e.g., the physical process RUN has

four parameterization schemes) and Y 1;Y 2;⋯;Ya are the mean objective function values (i.e., treatment
means) of corresponding schemes (i.e., treatments). We adopted the test procedure of Tukey (1949), which
has been highly recommended for its computational simplicity and statistical features (Benjamini, 2010). It
makes use of the distribution of the studentized range statistic

q ¼ Ymax−Yminffiffiffiffiffiffiffi
MSE
n

q ¼ Ymax−Yminffiffiffiffiffiffiffiffiffiffiffiffi
SSE

n N−að Þ
q (5)

where Ymax is the largest treatment mean, Ymin is the smallest treatment mean, n is the sample size of

each treatment, N is the total sample size of all treatments, MSE is the mean square error, SSE ¼ ∑
a

p¼1
∑
n

q¼1

Table 2
Properties of the 10 Selected Hydrologic Regions Over China

No.
Hydrologic
region Area (km2)

Precipitation
(mm/year)

Temperature
(°C) Soil texture Vegetation type

1 Songhua River
basin (SHR)

1,105,048.73 517.6 1.4 44.2% loam; 40.6% clay loam;
11.8% silt loam

42.9% mixed forest; 26.3% dryland cropland
and pasture; 14.6% savanna; 7.8% grassland

2 Liao River basin
(LIR)

344,875.40 542.9 6.9 54.7% loam; 26.6% clay loam;
10.0% sandy clay loam

40.4% dryland cropland and pasture; 27.1%
cropland/grassland mosaic; 12.5% mixed
forest; 6.4% cropland/woodland mosaic

3 Hai River basin
(HAR)

331,541.62 518.4 10.1 42.6% clay loam; 36.6% loam;
20.5% sandy clay loam

31.8% irrigated cropland and pasture;
19.4% cropland/grassland mosaic; 14.6%
dryland cropland and pasture; 11.7%
cropland/woodland mosaic

4 Yellow River
basin (YLR)

803,410.71 468.2 6.6 66.8% loam; 18.8% clay loam;
8.9% sandy clay loam

48.4% grassland; 20.5% shrubland; 11.4%
cropland/grassland mosaic; 6.5% irrigated
cropland and pasture

5 Huai River
basin (HUR)

322,521.09 929.7 14.7 41.6% clay loam; 27.3% loam;
15.3% sandy loam; 9.0% clay

81.8% irrigated cropland and pasture; 6.3%
cropland/woodland mosaic; 2.8% dryland
cropland and pasture

6 Yangtze River
basin (YZR)

1,671,677.13 1,056.1 11.4 50.6% clay loam; 36.5% loam;
10.6% clay

24.4% grassland; 18.4% irrigated cropland
and pasture; 11.7% dryland cropland and
pasture; 10.6% shrubland; 10.5%
cropland/grassland mosaic

7 Southeast River
basin (SER)

219,904.27 1,921.9 17.5 75.8% clay loam; 15.1% clay;
4.2% sandy clay loam

33.8% evergreen needleleaf forest; 26.4%
cropland/woodland mosaic; 24.1% irrigated
cropland and pasture; 10.5% mixed forest

8 Pearl River
basin (PLR)

513,435.24 1,537.4 19.8 61.6% clay loam; 23.0% sandy
clay loam; 13.9% clay

55.1% irrigated cropland and pasture; 16.5%
cropland/grassland mosaic; 5.8%
shrubland; 5.3% savanna; 5.2% evergreen
needleleaf forest

9 Southwest River
basin (SWR)

776,692.78 781.2 4.7 76.7% loam; 9% clay loam; 8.3%
clay; 4.6% land ice

46.2% grassland; 12.4% mixed shrubland/
grassland; 9.0% shrubland; 8.0% mixed
forest; 6.6% deciduous broadleaf forest

10 Inland River
basin (ILR)

3,531,123.02 217.8 3.2 67.3% loam; 11.2% sand; 6.6%
sandy clay loam; 5.4%
sandy loam

41.2% barren or sparsely vegetated; 19.6%
grassland; 18.0% mixed shrubland/
grassland; 15.4% shrubland
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Yp;q−Yp
� �2

is the sum of the square error, and N − a is the degree of freedom associated with MSE.

Tukey's test declares that the two means are significantly different at the significance level α
(0 ≤ α ≤ 1) if

Yk−Yl

�� ��>qα a;N−að Þ
ffiffiffiffiffiffiffiffiffiffi
MSE
n

r
(6)

where qα a;N−að Þ can be obtained from the critical value table of the studentized range distribution.

Tukey's test is based on the assumptions that the samples are mutually independent and normally distribu-
ted with equal variances. We checked the normality by Kolmogorov‐Smirnov test (Massey, 1951) and the
homogeneity by Levene's test (Levene, 1960). When these two assumptions were violated, we applied the
transformation of Box and Cox (1964) to normalize the data with constant variance. We set α to 0.05 and
therefore distinguished the categories of the parameterization schemes by Tukey's test at 95%
confidence level.

3. Results and Discussion
3.1. Evaluation of the Ensemble Experiments

We evaluated SH, LH, and TWSA from the 288 experiments against observations. The Noah‐MP‐simulated
terrestrial water storage consists of canopy‐intercepted water, snow water equivalent, total soil water depth,
and groundwater storage (Ma et al., 2017). These components shall be evaluated separately to identify the
specific sources of model deficiencies (Xia et al., 2017). However, we focused on comparing total TWSA
due to the lack of high‐quality observations for individual components in China. Following Xia et al.
(2016b), Xia et al. (2017), and Ma et al. (2017), we excluded the water storage in lakes and rivers, which
are not modeled in Noah‐MP.We then calculated monthly TWSA relative to the same baseline time‐average
(i.e., 2004–2009) as GRACE‐derived TWSA for the period 2003–2010. Finally, we used the same regional
mask at the model spatial resolution to derive regional averages of the observed and simulated monthly
SH, LH, and TWSA over all the hydrologic regions.

Figure 2 shows the multiyear mean annual cycle of spatially averaged SH, LH, and TWSA for the ensemble
experiments and observations over 10 hydrologic regions. The boxplots present the uncertainty ranges by
five statistics (i.e., the minimum, first quartile, median, third quartile, and the maximum) of the ensemble
experiments. The ensemble experiments basically captured the annual cycle of observations with relatively
wide uncertainty ranges in the warm season. This indicates that the performance differences of the selected
schemes are more distinct in the warm season.

The seasonal variability of SH was largest over region 10, followed by regions 1–4, medium over regions 5
and 9, and smallest over regions 6–8. This decreasing trend from cold, arid to hot, humid regions is consis-
tent with the finding of Zhou and Huang (2014), and it is attributable to the impacts of the land‐air tempera-
ture difference and surface wind speed. Most experiments underestimated SH in all seasons over all
hydrologic regions. The most obvious underestimation occurred over the most humid regions 6–8 in all sea-
sons and over other regions in the warm rainy season. Pilotto et al. (2015) also found that the underestima-
tion of SH is more significant in the rainy season than in the dry season due to the larger cold bias of soil
temperature. Ma et al. (2017) found that Noah‐MP underestimates SH throughout the year over most arid
regions and greatly underestimates SH in the early growing season over the humid regions. They demon-
strated that the underestimation can be alleviated by using a leaf area index climatology prescribed for each
land use type.

The seasonal variability of LH was largest over regions 1–3 and 5–8, medium over regions 4 and 9, and smal-
lest over region 10. This decreasing trend from humid to arid regions shows strong latitudinal gradients
corresponding to climate patterns in China and is in line with the findings of Yao et al. (2013) and Ma
et al. (2019). The ensemble range of LH generally contained observations in most seasons but underesti-
mated LH in winter over all hydrologic regions. This is likely related to the model's failure to reproduce
direct root water uptake from the saturated zone, which is a dominant process controlling evapotranspira-
tion of the phreatophytes (Wang et al., 2018; Zheng et al., 2015). In addition, LH underestimation can also
be detected in summer over regions 1–3 and 5 and in spring and early summer over regions 7, 8, and 10.
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It could be attributed to the dry biases of soil liquid water content in the topsoil (Gao et al., 2015). By contrast,
LH was overestimated in summer over regions 6–9. This LH overestimation compensates the concurrent
large SH underestimation.

The seasonal variability of TWSA was largest over regions 8 and 9, followed by regions 5–7, medium over
regions 1–4, and smallest over region 10. The regional differences agree well with the spatial patterns of pre-
cipitation, which are mainly determined by the East Asian monsoon system and the topographic effects
(Zhai et al., 2005). Additionally, regional characteristics such as topography, soil, and vegetation conditions
also influence TWSA by partitioning water storage in soil and river systems. The ensemble experiments over-
estimated TWSA in the cold season but underestimated it in the warm season over most regions. One excep-
tion was for the regions 2, 3, and 5, where TWSAwas underestimated in the cold season but overestimated in
the warm season. The large uncertainty ranges for overestimation or underestimation of TWSA are mainly

Figure 2. Multiyear mean annual cycle of spatially averaged (a) sensible heat, (b) latent heat, and (c) terrestrial water storage anomaly over 10 hydrologic regions,
where box plots are results simulated by 288 ensemble experiments and red circles are observations.
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due to the variability of different scheme combinations in simulating soil moisture, runoff, and groundwater.
Besides, snow water equivalent is an important water storage term for the cold regions of China. It not only
influences the estimates of terrestrial water storage but also affects total runoff and soil moisture via snow-
melt (Xia et al., 2017). The large uncertainty ranges in the cold season for the cold regions may be related to
the variability of different scheme combinations for the simulation of snowpack‐snowmelt and soil freeze‐
thaw processes, which are controlled by ground heat flux (Yang, Niu, et al., 2011).

3.2. Uncertainty Analysis of the Ensemble Experiments

Figure 3 compares the performances of the ensemble experiments over 10 hydrologic regions using Taylor
skill score. The SH scores ranged between 0.55 and 0.99, with the mean decreasing from 0.97 over regions
4 and 10, 0.90–0.92 over regions 1–3 and 9, to 0.81–0.85 over regions 5–8. The LH scores ranged between
0.81 and 0.99, with the mean of 0.95–0.98 over all regions, except for a reduction to 0.93 over region 8.
Thus, the ensemble can well reproduce observed SH and LH variations over all regions. By contrast,
TWSA had worse scores, ranging between 0.27 and 0.96, with the mean decreasing from 0.90 over region
1, 0.80–0.84 over regions 2, 5, 7, and 8, 0.55–0.71 over regions 3, 4, 9, and 10, to 0.43 over region 6.

Figure 4 compares Taylor skill scores among different parameterization schemes for each of the six pro-
cesses. The SH scores exhibited similar behaviors in the SFC process over regions 1–6 and 9, where M‐O

Figure 3. Taylor skill score for (a) sensible heat, (b) latent heat, and (c) terrestrial water storage anomaly over 10 hydrologic regions simulated by 288 ensemble
experiments. Orange bars are Taylor skill scores larger than the ensemble mean, while blue bars are those smaller than the ensemble mean.
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scheme performed better than Chen97 scheme. Conversely, Chen97 outperformed M‐O over regions 7, 8,
and 10. Since M‐O using zero‐displacement height produces greater SH than Chen97 (Yang, Niu, et al.,
2011), it can partly alleviate underestimation, and conversely, Chen97 can reduce overestimation. The SH
scores over regions 1–6 also depended on the RAD process, where setting gap to (1−fveg) generally
outperformed f(3D, cosz) and zero. This is reasonable since the RAD process controls the radiation
transfer through the vegetation canopy with regard to subgrid distributions of vegetation (Niu et al.,
2011). The (1−fveg) scheme yields the largest undercanopy solar radiation, while the zero scheme gives
the smallest. Moreover, substantial SH score differences existed between the parameterization schemes of
the RUN process over regions 1, 4–6, and 8–10, where the best schemes varied a lot with regions. Among
the four schemes, SIMTOP produces the wettest soil and greatest evapotranspiration while BATS
produces the driest soil and smallest evapotranspiration (Yang, Niu, et al., 2011).

Figure 4. The relationship between parameterization scheme and Taylor skill score for (a) sensible heat, (b) latent heat, and (c) terrestrial water storage anomaly
over 10 hydrologic regions simulated by 288 ensemble experiments, where numbers with different colors represent parameterization schemes and dashed lines are
the mean Taylor skill scores of all ensemble experiments. BTR = soil moisture factor for stomatal resistance; RUN = runoff‐groundwater; SFC = surface heat
exchange coefficient; INF = frozen soil permeability; FRZ = supercooled liquid water; RAD = radiation transfer.
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For LH simulation, substantial score differences occurred among the four schemes in the RUN process,
where BATS performed the best over regions 4, 6, 7, 9, and 10 but worst over other regions by underestima-
tion. Therefore, the RUN process influences the partitioning of available energy into SH and LH through soil
moisture (Xia et al., 2014). The RAD process dominated the model performance over regions 1–5, where
setting gap to (1−fveg) outperformed the other two schemes over region 4 but performed worse over the
other four regions. Regions with smaller green vegetation fraction have a larger between‐canopy gap, expos-
ing more understory vegetation or snow surface to solar radiation and thus producing larger LH by (1−fveg)
scheme. Substantial differences were also simulated over regions 4 and 6–10 by the SFC process, where
Chen97 outperformed M‐O. This occurred because M‐O produces smaller LH to balance larger SH by using
zero‐displacement height (Yang, Niu, et al., 2011). Furthermore, large differences were produced over
regions 2–6, 9, and 10 by the INF process, where Koren99 outperformed NY06. The NY06 produces higher
permeability in frozen soil and thus more soil water and less surface runoff than Koren99 (Niu & Yang,
2006). Therefore, the INF process influences LH simulation through soil moisture over the regions with
frozen soil.

The TWSA score differences were similar over all regions between the schemes in the INF process, where
NY06 was generally better than Koren99. The INF process also influenced the water storage, where NY06
reduced TWSA overestimation in the cold season. Substantial score differences were identified over all
regions with the RUN process, where BATS performed the best over regions 2 and 7 whereas the worst over
other regions. The RUN process directly influences the partitioning of water storage into the soil and river
systems (Zheng et al., 2017). Moreover, substantial differences were observed in the SFC process over region
9 where Chen97 outperformed M‐O, and in the RAD process over regions 1, 3–5, and 8 where setting gap to
(1−fveg) performed worse than the other two schemes. Chen97 produces more LH and thus less soil moist-
ure than M‐O, whereas (1−fveg) produces more LH and thus less soil moisture than the other two schemes.
Hence, the SFC and RAD processes indirectly affect TWSA through LH.

3.3. Sensitivity Analysis of the Physical Processes

Figure 5 compares the sensitivity scores, based on the average Taylor skill score over all experiments using
the same scheme, for SH, LH, and TWSA over 10 hydrologic regions. The sensitivity categories of the
physical processes agreed fairly well with the performance differences of the parameterization schemes as
identified in Figure 4. However, the sensitivity scores can also identify the insensitive or sensitive processes
that are hard to be distinguished by direct comparison of the scheme performances. For instance, the INF
process has two schemes that produced significant differences for SH and LH over region 4 (Figure 4) but
was insensitive as compared to other processes (Figure 5). This is because only a few experiments using
NY06 resulted in worse performance than all others using Koren99, and their performance differences were
statistically insignificant. Overall, the number of sensitive processes varied from one to three over different
regions, and the FRZ process was insensitive over all regions since its two schemes exhibited nonsignificant
performance difference.

For SH simulation, the RUN, SFC, and RAD processes dominated skill score differences, whereas the BTR,
INF, and FRZ processes had little influence. SFC was the most sensitive process except for regions 5 and 8,
where, respectively, RAD and RUN took over. This agrees with Yang, Niu et al. (2011) in that SFC is themost
important factor for SH. The importance of SFC in controlling the total surface energy flux to the atmosphere
(i.e., SH and LH) has been shown by many other studies (Chen & Zhang, 2009; Gao et al., 2015; Niu
et al., 2011).

For LH simulation, the RUN, SFC, and RAD processes dominated skill score differences over most regions,
except that the BTR process also had pronounced influence over regions 1 and 4. On the other hand, the
influences of the INF and FRZ processes were negligible. Our result is in general accordance with Hong
et al. (2014), who found the sensitivity order for evapotranspiration simulation as RAD > SFC > RUN >
BTR > INF > FRZ.

For TWSA simulation, the RUN and RAD processes dominated skill score differences over almost all
regions, whereas the SFC and FRZ processes had little influence.Meanwhile, BTRwas sensitive over region 2
and INF was sensitive over regions 1 and 2. Our result is similar to Hong et al. (2014), who found the
sensitivity order for runoff simulation as RUN > SFC > RAD > INF > BTR > FRZ. The difference is that
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we found SFC to be less sensitive than RAD over almost all regions, while INF was more sensitive than RAD
over the regions with frozen soil (regions 1, 2, and 10).

3.4. Combinatorial Optimization of the Parameterization Schemes

Based on the scheme categories from multiple comparisons (supporting information Figures S1–S4), we
selected the best schemes for optimization of SH, LH, and TWSA independently and simultaneously in
each of the 10 hydrologic regions (Table 3). Although the best schemes so selected were generally consistent
with those from direct performance comparison (Figure 4), multiple comparisons provide a clearer way of
distinguishing parameterization schemes. The best schemes varied with regions of characteristic hydrocli-
mate, soil, and vegetation conditions. Depending on regions, the number of best experiments varied from
2–96 for SH, 2–36 for LH, 4–64 for TWSA, and 2–16 for their simultaneous optimization. The best schemes
also varied with variables, especially in the most sensitive processes. For instance, the best RUN schemes
were Schaake96 and BATS for SH but SIMGM and SIMTOP for LH over region 1. Thus, optimizing a

Figure 5. Sensitivity scores of different physical processes for (a) sensible heat, (b) latent heat, and (c) terrestrial water storage anomaly over 10 hydrologic regions
simulated by 288 ensemble experiments. BTR = soil moisture factor for stomatal resistance; RUN = runoff‐groundwater; SFC = surface heat exchange coefficient;
INF = frozen soil permeability; FRZ = supercooled liquid water; RAD = radiation transfer.
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single variable can sometimes degrade the skill in simulating other variables (Hong et al., 2014). Overall,
the best schemes for the simultaneous optimization of SH, LH, and TWSA were more consistent with
those for the independent optimization of TWSA because a larger weight was assigned to TWSA than SH
and LH. However, the best schemes for SH and LH were also so identified for simultaneous optimization
of the three variables even though they were not optimal for TWSA, that is, the Noah scheme in the
BTR process over regions 6, the SIMTOP scheme in the RUN process over region 8, and the NY06
scheme in the INF process over regions 8. On the other hand, the worst schemes for SH and/or LH were
not identified as the best schemes for simultaneous optimization even if they were optimal for TWSA,
that is, the Chen97 scheme in the SFC process over region 5, the M‐O scheme in the SFC process over
region 8, the NY06 scheme in the INF process over region 5, and the f(3D, cosz) scheme in the RAD
process over regions 1, 3, and 8. The outcome can be explained by the fact that the performance
differences between those and other schemes of the same process were relatively less obvious for TWSA
than for SH and/or LH.

Table 3
Best Schemes Based on the Multiple Comparisons of Different Physical Processes for Different Regions and Variables

Optimization variable Hydrologic region BTR RUN SFC INF FRZ RAD Number of best experiments

SH 1. SHR 1 3, 4 1 2 1, 2 2 4
2. LIR 1 4 1 2 1, 2 3 2
3. HAR 2, 3 4 1 1, 2 1, 2 3 8
4. YLR 1, 2, 3 1, 2, 3, 4 1 1, 2 1, 2 2, 3 96
5. HUR 2, 3 4 1 1, 2 1, 2 3 8
6. YZR 1, 2 4 1 2 2 3 2
7. SER 1, 2, 3 1, 2, 3 2 1, 2 1, 2 1, 3 72
8. PLR 1 2, 3 2 1 1, 2 2, 3 8
9. SWR 2, 3 4 1 2 2 2, 3 4
10. ILR 1, 2 1, 2 2 1 1, 2 3 8

LH 1. SHR 2, 3 1, 2 1 1, 2 2 1 8
2. LIR 1, 2, 3 1, 2, 3 1 2 1, 2 1, 2 36
3. HAR 1, 2, 3 1, 3 1 2 1, 2 1, 2 24
4. YLR 1 4 2 2 1, 2 3 2
5. HUR 2, 3 1, 2, 3 1 2 1, 2 1, 2 24
6. YZR 1, 2, 3 4 2 2 1, 2 3 6
7. SER 1, 2, 3 4 2 1 1, 2 3 6
8. PLR 1, 2, 3 1, 2, 3 2 1 1, 2 2 18
9. SWR 1 3, 4 2 2 2 2 2
10. ILR 1, 2, 3 4 2 2 2 3 3

TWSA 1. SHR 2, 3 2 1 1 2 1, 2 4
2. LIR 2, 3 3, 4 1 1 2 1, 2 8
3. HAR 1, 3 1 2 1 1, 2 1, 2 8
4. YLR 1, 3 1 2 1 1 1, 2 4
5. HUR 2, 3 1, 2 1, 2 1, 2 1, 2 1, 2 64
6. YZR 2, 3 1 2 2 1, 2 3 4
7. SER 1, 2 4 2 1 1, 2 3 4
8. PLR 1, 3 1 1, 2 2 1, 2 1, 2 16
9. SWR 2, 3 1 2 1, 2 2 2, 3 8
10. ILR 2, 3 1, 2 1, 2 1 2 1 8

SH, LH, and TWSA 1. SHR 2, 3 2 1 1 2 2 2
2. LIR 2, 3 3, 4 1 1 2 1, 2 8
3. HAR 1, 3 1 2 1 1, 2 2 4
4. YLR 1, 3 1 2 1 1 1, 2 4
5. HUR 2, 3 1, 2 1 2 1, 2 1, 2 16
6. YZR 1, 2, 3 1 2 2 1, 2 3 6
7. SER 1, 2 4 2 1 1, 2 3 4
8. PLR 1, 3 2 2 1, 2 1, 2 2 8
9. SWR 2, 3 1 2 1, 2 2 2, 3 8
10. ILR 2, 3 1, 2 1, 2 1 2 1 8

Note. SH = sensible heat; LH= latent heat; TWSA= terrestrial water storage anomaly; BTR = soil moisture factor for stomatal resistance; RUN= runoff‐ground-
water; SFC = surface heat exchange coefficient; INF = frozen soil permeability; FRZ = supercooled liquid water; RAD = radiation transfer.
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Figure 6. Taylor diagrams of the best experiments for the simulation of sensible heat (first column, a, d, g, and j), latent heat (second column, b, e, h, and k),
and terrestrial water storage anomaly (third column, c, f, i, and l) based on independent optimization of sensible heat (first row, a‐‐c), latent heat (second row,
d‐‐f), and terrestrial water storage anomaly (third row, g‐‐i) and simultaneous optimization of all three variables (fourth row, j‐‐l). Gray solid lines represent the
Taylor skill score contours. SH = sensible heat; LH = latent heat; TWSA = terrestrial water storage anomaly.
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Figure 6 presents the Taylor diagrams of the simulations by the best parameterization scheme combinations
(i.e., best experiments) based on independent SH, LH, and TWSA optimization and their simultaneous opti-
mization as shown in Table 3. The best experiments always had larger Taylor skill scores for LH than SH and
TWSA, regardless which optimization was used. The independent optimization of one variable reduced the
scores of other variables. For example, the SH optimization (Figure 6a) reduced the scores for LH (Figure 6b)
and TWSA (Figure 6c) when comparing with LH optimization (Figure 6e) and TWSA optimization
(Figure 6i), respectively. The simultaneous optimization allowed tradeoffs among all variables and produced
overall more reasonable results (Figures 6j–6l), although it inevitably reduced the scores over some regions
for some variables. The score reduction was much obvious for SH over regions 3, 6, and 9 (comparing
Figure 6a with Figure 6j), for LH over regions 4, 9, and 10 (comparing Figure 6e with Figure 6k), and for
TWSA over region 8 (comparing Figure 6i with Figure 6l).

Figure 7. Multiyear mean annual cycle of spatially averaged (a) sensible heat, (b) latent heat, and (c) terrestrial water storage anomaly over 10 hydrologic regions,
where gray bands are results simulated by 288 ensemble experiments, blue bands are results simulated by the best experiments of independent optimization,
green bands are results simulated by the best experiments of simultaneous optimization, and red circles are observations.
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3.5. Comparison Between the Ensemble and Best Experiments

Figure 7 compares multiyear mean annual cycles of SH, LH, and TWSA averaged over each of the 10 hydro-
logic regions from all 288 experiments (i.e., ensemble experiments) and those using the best parameteriza-
tion scheme combinations (i.e., best experiments) based on independent and simultaneous optimizations.
The uncertainty ranges of the best experiments were much narrower and closer to observations than those
of the ensemble experiments. The result based on the simultaneous optimization agreed better with that
from TWSA‐independent optimization giving its larger weight than SH and LH. The optimized Noah‐MP
can better capture the overall water and energy cycles, including both timing and magnitude.
Nonetheless, there were still large SH underestimations over the most humid regions 6–8, which are related
to cold soil temperature biases (Pilotto et al., 2015) and so unable to be reduced through the optimization of
the existing parameterizations. Meanwhile, the relatively large LH bias over the highly irrigated cropland
region 5 is likely due to the use of leaf dynamics in Noah‐MP, which may capture crop growth under rainfed
but not irrigated conditions (Cai, Yang, David, et al., 2014).

Figure 8 compares the mean Taylor skill scores of SH, LH, and TWSA for ensemble experiments and best
experiments based on independent and simultaneous optimizations. The score gain was the largest from
TWSA optimization, about 0.2 (46%) over region 6, 0.16–0.18 (24–32%) over regions 3, 9, and 10, 0.07–0.12
(10–15%) over regions 4, 5, 7, and 8, and 0.05 (6%) over regions 1 and 2. The gain from SH optimization
was about 0.06–0.1 (7–12%) over regions 5–7, 0.05 (5%) over regions 1–3 and 9, and less than 0.02 (3%) over
other regions. Although the gain from LH optimization was not significant (less than 0.03 or 3%), its score
was already larger than SH and TWSA. The score from simultaneous optimization agreed well with that
from TWSA optimization over all regions. Because of the tradeoff, the simultaneous optimization reduced
the SH score respectively by 0.16 (18%), 0.14 (17%), and 0.07 (7%) over regions 3, 6, and 9, reduced the LH
score respectively by 0.02 (2%), 0.02 (1%), and 0.04 (4%) over regions 4, 9, and 10, and reduced the TWSA
score by 0.03 (4%) over region 8.

The low discrepancy of SH and LH from observations implies that the surface energy budget was well repro-
duced by the best parameterization combinations. The relatively large TWSA discrepancy is attributable to
model biases in soil moisture, groundwater, and snow water equivalent. These biases are likely related to the
model assumption of evenly distributed soil texture (Wang et al., 2018), which could be improved by consid-
ering vertical heterogeneity in soil layers (Gao et al., 2015) and more so by incorporating three‐dimensional
subgrid variability (Choi et al., 2007). The Noah‐MP's disagreement with GRACE observations may be partly
due to its lack of lake water storage (Ma et al., 2017). In addition, Noah‐MP simulates only the natural part of
TWSA without considering anthropogenic impacts such as irrigation and reservoir regulation, which were
detected by GRACE (Cai, Yang, David, et al., 2014; Ma et al., 2017). Furthermore, GRACE data contain mea-
surement, aliasing, and signal leakage errors that can also lead to the disagreement (Güntner, 2008; Seo
et al., 2006). Obviously, the overall performance of any LSM, as evaluated standalone, is highly dependent
on the quality of the forcing data, especially precipitation and radiation, which play an essential role in
surface flux exchanges through impacts on topsoil temperature and moisture (Gao et al., 2015). The model
discrepancies from the observational reference may, therefore, be a result of the uncertainties in the

Figure 8. Mean Taylor skill scores for (a) sensible heat, (b) latent heat, and (c) terrestrial water storage anomaly over 10 hydrologic regions, where red lines are
results simulated by 288 ensemble experiments, blue lines are results simulated by the best experiments of independent optimization, and green lines are results
simulated by the best experiments of simultaneous optimization.
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reference itself as well as the errors in the forcing data, which also account for the nonclosure of the surface
water and energy budgets. For example, the FLUXNET MTE products have an underestimated interannual
variability because some explanatory variables that used to train the MTE were assumed static over years
(Jung et al., 2011). Nonetheless, some parameterization schemes and/or parameters have considerable
impacts on model performance and can be tuned to better represent the regional hydroclimatic regimes
and watershed properties (Gan et al., 2014, 2018). Our analysis above has further demonstrated how to iden-
tify sensitive processes and best parameterizations for a specific LSM.

4. Summary and Conclusions

We conducted sensitivity and uncertainty analyses on the community LSM, Noah‐MP, to identify the most
responsive processes and the best parameterization combinations for simulating SH, LH, and TWSA over 10
hydrologic regions in China. For this, we designed and conducted an ensemble of 288 parameterization
experiments, combining six physical processes (BTR, RUN, SFC, INF, FRZ, and RAD) each with multiple
alternative schemes. We used Taylor skill score to quantify the model performance. The ensemble generally
captured the observed seasonal variability of surface energy and water budgets. The model simulated LH
realistically, with scores ranging from 0.81–0.99 among regions, underestimated SH systematically, with
scores between 0.55 and 0.99, and overestimated (underestimated) TWSA in the cold (warm) season over
most regions, with scores reduced to 0.27–0.96. Direct comparison of these scores allows us to detect signifi-
cant performance differences among alternative parameterization schemes in terms of specific processes.

However, performance differences among various schemes across multiple processes were difficult to be dis-
tinguished by direct comparison. Sensitivity scores based on the difference between the largest and smallest
mean Taylor skill scores were able to identify the relative degrees of sensitivity across all physical processes.
We found that the process sensitivities were region‐specific because the performances of different parame-
terization schemes were depended on regional characteristics such as hydroclimate, soil, and vegetation con-
ditions. In particular, the RUN, SFC, and RAD processes were most sensitive for SH and LH over almost all
regions. By contrast, the TWSA was dominated by the RUN and RAD processes while largely influenced by
the BTR and INF processes over some limited regions. On the other hand, the FRZ process was relatively
insensitive over all regions for all variables.

We further used Tukey's test to identify the best parameterization schemes by multiple comparisons of the
mean Taylor skill scores for different schemes of the same process. The independent optimization of indivi-
dual variables improved the mean scores by 0.6–12.1% for SH, 0.1–3.1% for LH, and 5.4–45.5% for TWSA,
comparing with those of ensemble experiments. No single scheme combination performed well over all
regions or all variables. The best scheme combination from one region may perform poorly in other regions,
and improving the skill for one variable may reduce the score for other variables. As such, the simultaneous
optimization made tradeoffs among all variables, which generally reduced the skill enhancement from
independent optimization, but still improved the overall model performance over the ensemble. The score
gains were −12.1–9.5% for SH, −2.6–3.0% for LH, and 5.6–45.5% for TWSA, comparing with those of the
ensemble mean.

Although the sensitive physical processes and the best parameterization schemes varied with regions and
variables, our systematic analyses allow us to recommend the best Noah‐MP configurations for simulating
surface water and energy fluxes over China as follows—process (scheme): RUN(4), SFC(1), RAD(3),
INF(2), BTR(1), FRZ(2) for SH; RUN(3), SFC(2), RAD(2), INF(2), BTR(1, 2, 3), FRZ(2) for LH; RUN(2),
SFC(2), RAD(2), INF(1), BTR(3), FRZ(2) for TWSA; and RUN(2), SFC(2), RAD(2), INF(1), BTR(3),
FRZ(2) for their joint.

Caution must be taken for our conclusion and recommendation above. The best configurations may not be
good at modeling extremes such as drought and flood, since our emphasis was placed on seasonal rather
than interannual variability of the land surface fluxes. We have focused on the model structural uncertainty
that arises from alternative parameterization schemes of the selected physical processes, which is only one of
the many sources of uncertainty in LSMs (Nearing et al., 2016). We have not tuned specific parameters in
these schemes but taken their default values, which are not universal. Some key parameters should be tuned
to improve each scheme's performance, especially considering regional surface characteristics (Cuntz et al.,
2016; Mendoza et al., 2015). Besides, data uncertainties from the forcing conditions (Xia et al., 2005), soil
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textures (Zheng & Yang, 2016), and vegetation variations (Li et al., 2018) can affect model skill scores. Data
sets from different sources need to be evaluated and compared to increase our confidence in model simula-
tions. Some significant physics such as subgrid variability (Choi et al., 2007), crop dynamics (Bonan &
Doney, 2018), and lake dynamics (MacKay et al., 2009) are still missing in Noah‐MP. Future improvement
may include these physics to account for lateral flow, rhizosphere effect, dynamic crop growth, surface water
storage, and human‐induced water use. Nonetheless, our study offers not only a systematic approach for
model structural sensitivity and uncertainty analyses but also an optimized set of physics configurations
from the existing parameterizations, facilitating further model improvement.
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